The concept of a radioresistant (RR) phenotype has been challenged with use of stereotactic body radiotherapy (SBRT). We compared outcomes following SBRT to RR spinal metastases to a radiosensitive cohort.
Renal cell, melanoma, sarcoma, gastro-intestinal, and thyroid spinal metastases were identified as RR and prostate cancer (PCA) as radiosensitive. The primary endpoint was MRI-based local failure (LF). Secondary endpoints included overall survival (OS) and vertebral compression fracture (VCF).
From a prospectively maintained database of 1394 spinal segments in 605 patients treated with spine SBRT, 173 patients/395 RR spinal segments were compared to 94 patients/185 PCA segments. Most received 24-28 Gy in 2 fractions (68.9%) and median follow-up was 15.5 months (range, 1.4-84.2 months). 1- and 2-year LF rates were 19.2% and 22.4% for RR metastases, respectively, which were significantly greater (p < 0.001) than PCA (3.2% and 8.4%, respectively). Epidural disease (HR: 2.47, 95% CI 1.65-3.71, p < 0.001) and RR histology (HR: 2.41, 95% CI 1.45-3.99, p < 0.001) predicted for greater LF. Median OS was 17.4 and 61.0 months for RR and PCA cohorts, respectively. Lung/liver metastases, polymetastatic disease and epidural disease predicted for worse OS. 2-year VCF rates were ~ 13% in both cohorts. Coverage of the CTV V90 (clinical target volume receiving 90% of prescription dose) by ≥ 87% (HR: 2.32, 95% CI 1.29-4.18, p = 0.005), no prior spine radiotherapy (HR: 1.96, 95% CI 1.09-3.55, p = 0.025), and a greater Spinal Instability Neoplasia Score (p = 0.013) predicted for VCF.
Higher rates of LF were observed after spine SBRT in RR metastases. Optimization strategies include dose escalation and aggressive management of epidural disease.

Author