Lung cancer (LC) ranks first among all causes of cancer-related death, with non-small cell lung cancer (NSCLC) taking up 85% of lung cancer cases. Although lncRNA MCM3AP antisense RNA 1 (MCM3AP-AS1) has been reported to be an oncogenic factor in NSCLC, its detailed mechanism in NSCLC is unknown. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine MCM3AP-AS1, microRNA (miR)-195-5p and E2F transcription factor 3 (E2F3) mRNA expressions in NSCLC tissues and cells. Western blot was utilized to determine the expression levels of E2F3, BCL2-associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), E-cadherin and N-cadherin. CCK-8 and Transwell assays were conducted to examine cell proliferation, migration and invasion, respectively. Dual-luciferase reporter assay and RNA immunoprecipitation experiments were used to determine the regulatory relationships between MCM3AP-AS1 and miR-195-5p, and miR-195-5p and E2F3. We demonstrated that MCM3AP-AS1 was overexpressed in NSCLC tissues and cells, and MCM3AP-AS1 overexpression accelerated the proliferation, migration and invasion of NSCLC cells. In addition, MCM3AP-AS1 overexpression markedly up-modulated Bcl-2 expression and repressed Bax expression; MCM3AP-AS1 overexpression also significantly up-regulated N-cadherin expression and suppressed E-cadherin expression in NSCLC cells. What is more, in NSCLC cells, miR-195-5p was a target of MCM3AP-AS1, and the latter worked as a molecular sponge for miR-195-5p to regulate E2F3 expression. Collectively, MCM3AP-AS1, serving as a competitive endogenous RNA (ceRNA) to regulate miR-195-5p/E2F3 axis, promotes NSCLC progression, which is a promising therapeutic target for NSCLC.

Author