HTLV-1, the first human oncogenic retrovirus, is a type C retrovirus that belongs to the Deltaretrovirus genus. The HTLV-1 genome has 8.5 kbp length, and consists of major genes such as gag, pol, pro, env, and pX region. This retrovirus is considered as one of the most deadly infectious agent for peripheral-blood mononuclear cells (PBMC). The infection of HTLV-1 can lead to dangerous complications, such as infective dermatitis (ID), uveitis, arthritis, lymphadenitis, arthropathies, Sjögren’s Syndrome (SS), and particularly HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) or Adult T-Cell Leukemia Lymphoma (ATLL). At the moment, Zidovudine (AZT) plus IFN-α is the only treatment available for HTLV-1 infections. Based on scientific studies, alongside the therapeutic regimens, intrinsic mechanisms also play a determinant role in reducing the signs of disease. Programmed cell death-1 (PD-1) signaling pathway, one of the most important checkpoints, has recently received interest, such as the development of a novel generation of anti-tumors. In the present study, we discuss the role of PD-1 signaling pathway in HTLV-1 infection as well as its application as a novel approach for treatment of HTLV-1 infections.
Copyright © 2020. Published by Elsevier Ltd.