The inadequate bioavailability and toxicity potential of antiretroviral therapy limit their effectiveness in the complete eradication of HIV from viral reservoirs. The penetration of these drugs into the brain is challenging because of the unfavorable physicochemical properties required to cross the membranes, limiting the transport of the drugs. Thus, in the current study, the authors report a nanocarrier-based drug delivery of a highly hydrophobic drug to overcome the existing limitations of the conventional therapies. An explicitly simple approach was used to overcome the limitations of existing anti-HIV therapies. The monophasic hot homogenized solution of lipid, drug, and solubilizer was diluted with the predetermined hot surfactant solution followed by the ultrasonication to generate the polydisperse nanoparticles with the size range of 50-1000 nm. The anti-HIV1 potential of nanostructured lipid carriers of Etravirine on HIV-infected cell lines showed efficacy with an appreciable increase in the therapeutic index as compared with the plain drug. Further, the results obtained from confocal microscopy along with flow cytometry exhibited efficient uptake of the nanocarrier loaded with coumarin-6 in cells. The pharmacokinetics of Etravirine nanostructured carriers was significantly better in all aspects compared to the plain drug solution, which could be attributed to molecular dispersion in the lipid matrix of the nanocarrier. A significant enhancement of Etravirine concentration of several-fold was also observed in the liver, ovary, lymph node, and brain, respectively, as compared to plain drug solution when assessed by biodistribution studies in rats. In conclusion, ETR-NLC systems could serve as a promising approach for simultaneous multi-site targeting and could provide therapeutic benefits for the efficient eradication of HIV/AIDS infections.
Copyright © 2021. Published by Elsevier B.V.

Author