Chimeric antigen receptor (CAR) T-cell immunotherapies targeting CD19 can achieve impressive clinical remission rates in the treatment of B-cell non-Hodgkin lymphoma and B-cell acute lymphoblastic leukemia. However, relapse after CD19-CAR T treatment remains a major issue, with CD19 antigen-negative relapse being one of the main reasons. CD22, another antigen expressed in a B-cell lineage-specific pattern, is retained following CD19 loss. Accordingly, we hypothesized that CD22 could represent an alternative target to alleviate or compensate for the ineffectiveness of CD19-CAR T therapy. To this end, we generated camelid-derived CD22 nanobodies, whose smaller size, greater stability, and lower immunogenicity offer better quality than classical antibodies, and we used them to construct third-generation CD22-CARs containing 4-1BB and ICOS co-stimulatory domains. The novel CD22-CAR T cells exhibited impressive cytotoxicity both in vitro and in vivo and significantly prolonged the overall survival of tumor-bearing NSG mice. These findings provide the basis for further translational studies employing CD22-CARs.
Copyright © 2021. Published by Elsevier B.V.