Cancer invading into nerves, termed perineural invasion (PNI), is associated with pain. Here we show that oral cancer patients with PNI report greater spontaneous pain and mechanical allodynia compared with patients without PNI, suggesting unique mechanisms drive PNI-induced pain. We studied the impact of PNI on peripheral nerve physiology and anatomy using a murine sciatic nerve PNI model. Mice with PNI exhibited spontaneous nociception and mechanical allodynia. PNI induced afterdischarge in A high threshold mechanoreceptors (AHTMRs), mechanical sensitization (i.e., decreased mechanical thresholds) in both A and C HTMRs, and mechanical desensitization in low threshold mechanoreceptors (LTMRs). PNI resulted in nerve damage, including axon loss, myelin damage, and axon degeneration. Electrophysiological evidence of nerve injury included decreased conduction velocity, and increased percentage of both mechanically-insensitive and electrically-unexcitable neurons. We conclude that PNI-induced pain is driven by nerve injury and peripheral sensitization in HTMRs.