Depressed right ventricular ejection fraction (RVEF) has clear prognostic significance in patients with pulmonary arterial hypertension (PAH). Accordingly, improvements in RVEF represent a desirable end-point in the development of PAH therapies. However, current methods for determination of RVEF require measurement of RV volume and are relatively complex and costly. Here, we validate a novel method for quantitative estimation of RVEF in rats based entirely upon analysis of readily available RV pressure waveforms that eliminates the need for simultaneous volume measurement and can be rapidly applied. Right ventricular pressure and volume (conductance catheter) measurements acquired from 15 rats (7 controls, 8 sugen/hypoxia PAH; 220-250 g) were used for the study. Over the same 10 beat interval, RVEF was directly measured from the volume signal and estimated from the pressure signal. Simultaneous measures were compared by linear regression and Bland-Altman analysis to define bias (accuracy) and precision. Measured RVEF ranged from 0.19 to 0.60 (mean 0.44 ± 0.10) and estimated from 0.19 to 0.52 (mean 0.42 ± 0.09). Across the dataset there was strong correlation (r = 0.813), with minimal bias (0.01) and an overall error of 20% consistent with acceptable accuracy and precision. Study results support the potential utility of a method based entirely upon analysis of the RV pressure waveform for assessing drug effects on RVEF in rat models of PAH.
Copyright © 2018. Published by Elsevier Inc.