Meniscus tears of the knee are among the most common orthopedic knee injury. Specifically, tears of the posterior root can result in abnormal meniscal extrusion leading to decreased function and progressive osteoarthritis. Despite contemporary surgical treatments of posterior meniscus root tears, there is a low rate of healing and an incidence of residual meniscus extrusion approaching 30%, illustrating an inability to recapitulate native meniscus function. Here, we characterized the differential functional behavior of the medial and lateral meniscus during axial compression load and dynamic knee motion using a cadaveric model. We hypothesized essential differences in extrusion between the medial and lateral meniscus in response to axial compression and knee range of motion. We found no differences in the amount of meniscus extrusion between the medial and lateral meniscus with a competent posterior root (0.338mm vs. 0.235mm; p-value = 0.181). However, posterior root detachment resulted in a consistently increased meniscus extrusion for the medial meniscus compared to the lateral meniscus (2.233mm vs. 0.4705mm; p-value < 0.0001). Moreover, detachment of the posterior root of the medial meniscus resulted in an increase in extrusion at all angles of knee flexion and was most pronounced (4.00mm ± 1.26mm) at 30-degrees of knee flexion. In contrast, the maximum mean extrusion of the lateral meniscus was 1.65mm ± 0.97mm, occurring in full extension. Furthermore, only the medial meniscus extruded during dynamic knee flexion after posterior root detachment. Given the differential functional behaviors between the medial and lateral meniscus, these findings suggest that posterior root repair requires reducing overall meniscus extrusion and recapitulating the native functional responses specific to each meniscus.

Author