The number of naevi on a person is the strongest risk factor for melanoma; however, naevus counting is highly variable due to lack of consistent methodology and lack of inter-rater agreement. Machine learning has been shown to be a valuable tool for image classification in dermatology.
To test whether automated, reproducible naevus counts are possible through the combination of convolutional neural networks (CNN) and three-dimensional (3D) total body imaging.
Total body images from a study of naevi in the general population were used for the training (82 subjects, 57,742 lesions) and testing (10 subjects; 4,868 lesions) datasets for the development of a CNN. Lesions were labelled as naevi, or not (“non-naevi”), by a senior dermatologist as the gold standard. Performance of the CNN was assessed using sensitivity, specificity, and Cohen’s kappa, and evaluated at the lesion level and person level.
Lesion-level analysis comparing the automated counts to the gold standard showed a sensitivity and specificity of 79% (76-83%) and 91% (90-92%), respectively, for lesions ≥2 mm, and 84% (75-91%) and 91% (88-94%) for lesions ≥5 mm. Cohen’s kappa was 0.56 (0.53-0.59) indicating moderate agreement for naevi ≥2 mm, and substantial agreement (0.72, 0.63-0.80) for naevi ≥5 mm. For the 10 individuals in the test set, person-level agreement was assessed as categories with 70% agreement between the automated and gold standard counts. Agreement was lower in subjects with numerous seborrhoeic keratoses.
Automated naevus counts with reasonable agreement to those of an expert clinician are possible through the combination of 3D total body photography and CNNs. Such an algorithm may provide a faster, reproducible method over the traditional in person total body naevus counts.

© 2021 The Author(s) Published by S. Karger AG, Basel.