Roxadustat is the first orally administered, small-molecule hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitor that has been submitted for FDA regulatory approval to treat anemia secondary to chronic kidney diseases. Its usage has also been suggested for pulmonary fibrosis; however, the corresponding therapeutic effects remain to be investigated. The in vitro effects of roxadustat on cobalt chloride (CoCl)-stimulated pulmonary fibrosis with L929 mouse fibroblasts as well as on an in vivo pulmonary fibrosismice model induced with bleomycin (BLM; intraperitoneal injection, 50 mg/kg twice a week for 4 continuous weeks) were investigated. It found that the proliferation of L929 cells was inhibited and the production of collagen I, collagen III, prolyl hydroxylase domain protein 2 (PHD2), HIF-1α, α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), transforming growth factor-β1 (TGF-β1) and p-Smad3 were reduced relative to that in the CoCl or BLM group after roxadustat treatment. Roxadustat ameliorated pulmonary fibrosis by reducing the pathology score and collagen deposition as well as decreasing the expression of collagen I, collagen III, PHD2, HIF-1α, α-SMA, CTGF, TGF-β1 and p-Smad3/Smad3. Our cumulative results demonstrate that roxadustat administration can attenuate experimental pulmonary fibrosis via the inhibition of TGF-β1/Smad activation.
Copyright © 2020. Published by Elsevier B.V.

References

PubMed