The strategy of targeting virulence factor has received great attention as it barely develops bacterial resistance. Sortase A (SrtA) and caseinolytic peptidase P (ClpP), as important virulence factors, are considered to be ideal pharmacological targets for methicillin-resistant Staphylococcus aureus (MRSA) infection. Through screening hundreds of compounds, we found scutellarin, a natural flavonoid, markedly inhibited SrtA and ClpP activities of MRSA strain USA300 with an IC of 53.64 μg/mL and 107.00 μg/mL, respectively. Subsequently, we observed that scutellarin could inhibit the SrtA-related virulence of MRSA. To demonstrate whether scutellarin directly binding to SrtA, fluorescence quenching assay and molecular docking were performed and the results indicated that scutellarin directly bonded to SrtA molecule with a K value of 7.58 × 10 L/mol. In addition to direct SrtA inhibition, scutellarin could also inhibit hemolytic activity of S. aureus by inhibiting the expression of Hla in a SrtA-independent manner. Further assays confirmed that scutellarin inhibited hemolysis by inhibiting ClpP. The combination of scutellarin and vancomycin showed enhancing inhibition of USA300 in vitro and in vivo, evidenced by decreased MIC from 3 μg/mL to 0.5 μg/mL and increased survival and improvement of lung pathology in pneumonia mice. Taken together, these results suggest that scutellarin exhibited di-inhibitory effects on SrtA and ClpP of USA300. The di-inhibition of virulence factors by scutellarin combined with vancomycin to prevent MRSA invasion of A549 cells and pneumonia in mice, indicating that scutellarin is expected to be a potential adjuvant against MRSA in the future.
Copyright © 2022. Published by Elsevier Inc.