Extraintestinal pathogenic Escherichia coli (ExPEC) is the major cause of Gram-negative-related sepsis. Bacterial survival in the bloodstream is mediated by a variety of virulence traits, including those mediating immune system evasion. Serine protease autotransporters of Enterobacteriaceae (SPATE) constitute a superfamily of virulence factors that can cause tissue damage and cleavage of molecules of the complement system, which is a key feature for the establishment of infection in the bloodstream. In this study, we analyzed 278 E. coli strains isolated from human bacteremia from inpatients of both genders, different ages, and clinical conditions. These strains were screened for the presence of SPATE-encoding genes as well as for phylogenetic classification and intrinsic virulence of ExPEC. SPATE-encoding genes were detected in 61.2% of the strains and most of these strains (44.6%) presented distinct SPATE-encoding gene profiles. sat was the most frequent gene among the entire collection, found in 34.2%, followed by vat (28.4%), pic (8.3%), and tsh (4.7%). Although in low frequencies, espC (0.7%), eatA (1.1%), and espI (1.1%) were detected and are being reported for the first time in extraintestinal isolates. The presence of SPATE-encoding genes was positively associated to phylogroup B2 and intrinsic virulent strains. These findings suggest that SPATEs are highly prevalent and involved in diverse steps of the pathogenesis of bacteremia caused by E. coli.
For latest news and updates