Monoamine oxidase inhibitors (MAOIs) are a class of drugs that can be used in the treatment of Parkinson’s disease, clinical depression, and anxiety by targeting monoamine oxidase B (MAO). However, the side effects of MAOIs drive the requirement of a new framework of enzyme inhibitors development. In this context, a new type of MAOI has been built on the framework of gold nanoclusters (AuNCs), realizing the transformation from no function of small molecules to MAOI function of ligand-modified AuNCs. The MAOI activity of fabricated AuNCs can be achieved by size control and specific ligands modification. In this work, AuNCs modified with cysteamine or 4-aminothiophenol, about 1-3 nm in size, were found to have MAOI activity (MAOI-like AuNCs) and their characterization has been extensively described. Meanwhile, the possible mechanism behind this MAOI activity has been explored and it is believed that the proper size of AuNCs with ligands containing amino groups can bind tightly with the entrance to active sites of MAO, blocking the enzyme interacting with its substrates, thereby realizing the function of MAOI. Last, the antimicrobial activity and the performance of the MAOI-like AuNCs in the human blood sample were explored and suggested that MAOI-like AuNCs do not possess strong antimicrobial activity and have no visualized side effect on blood cells, although the by-product peroxide of MAO reaction may reshape the white blood cells. The research in this work may shed some light on the development of a new type of enzyme inhibitor based on the framework of nanomaterials.
Copyright © 2021 Elsevier B.V. All rights reserved.

Author