Periodontal disease (PD) is a chronic inflammatory disease that affects the gum tissue and bone supporting the teeth. Although tooth-site level PD progression is believed to be spatio-temporally referenced, the whole-mouth average periodontal pocket depth (PPD) has been commonly used as an indicator of the current/active status of PD. This leads to imminent loss of information, and imprecise parameter estimates. Despite availability of statistical methods that accommodates spatiotemporal information for responses collected at the tooth-site level, the enormity of longitudinal databases derived from oral health practice-based settings render them unscalable for application. To mitigate this, we introduce a Bayesian spatiotemporal model to detect problematic/diseased tooth-sites dynamically inside the mouth for any subject obtained from large databases. This is achieved via a spatial continuous sparsity-inducing shrinkage prior on spatially varying linear-trend regression coefficients. A low-rank representation captures the nonstationary covariance structure of the PPD outcomes, and facilitates the relevant Markov chain Monte Carlo computing steps applicable to thousands of study subjects. Application of our method to both simulated data and to a rich database of electronic dental records from the HealthPartners Institute reveal improved prediction performances, compared with alternative models with usual Gaussian priors for regression parameters and conditionally autoregressive specification of the covariance structure.© 2020 John Wiley & Sons, Ltd.
Related Posts
3D Printing Technologies: Recent Development and Emerging Applications in Various Drug Delivery Systems.
August 6, 2020
A Rat Model of Polycystic Ovary Syndrome with Insulin Resistance Induced by Letrozole Combined with High Fat Diet.
May 26, 2020
Advertisement
Meeting Coverage
- ACC 2020The American College of Cardiology decided to cancel ACC.20/WCC due to COVID-19, which was scheduled to take place March 28-30 in Chicago. However, ACC.20/WCC Virtual Meeting continues to release cutting edge science and practice changing updates for cardiovascular professionals on demand and free through June 2020.
- ENDO: 2020ENDO 2020 Annual Conference has been canceled due to COVID-19. Here are highlights of emerging data that has still been released. Keep an eye out for ENDO Online 2020, which will take place from June 8 to 22.