Membrane voltage (Vm) plays a critical role in the regulation of several cellular behaviors, including proliferation, apoptosis, and phenotypic plasticity. Many of these same behaviors are affected by the stiffness of the underlying extracellular matrix, but the connections between Vm and the mechanical properties of the microenvironment are unclear. Here, we investigated the relationship between matrix stiffness and Vm by culturing mammary epithelial cells on synthetic substrata, the stiffnesses of which mimicked those of the normal mammary gland and breast tumors. Although proliferation is associated with depolarization, we surprisingly observed that cells are hyperpolarized when cultured on stiff substrata, a microenvironmental condition that enhances proliferation. Accordingly, we found that Vm becomes depolarized as stiffness decreases, in a manner dependent on intracellular calcium. Furthermore, inhibiting calcium-gated chloride currents abolishes the effects of substratum stiffness on Vm. Specifically, we uncovered a role for cystic fibrosis transmembrane conductance regulator (CFTR) in the regulation of Vm by substratum stiffness. Together, these results suggest a novel role for CFTR and membrane voltage in the response of mammary epithelial cells to their mechanical microenvironment.
© 2021. Published by The Company of Biologists Ltd.