Defective proprioceptive integration may play a role in the pathophysiology of motor symptoms in Parkinson’s disease (PD). Dysfunction related to proprioceptively-evoked postural reactions in PD patients is still a controversial issue, with only a limited number of studies to date and mostly discordant results. The aims of the present study were 1) to determine whether or not the proprioceptive defect in PD underlies postural impairment and 2) whether or not deep brain stimulation of the subthalamic nucleus (STN-DBS) affects proprioceptive integration. We examined proprioceptive integration during a postural task in 13 PD patients and 12 age-matched control subjects, using a muscle-tendon vibration paradigm. Analysis of the center of pressure displacement and kinematic data indicates a greater degree of postural destabilization and a reduced ability to maintain a vertical orientation in PD. We found a significant positive effect of STN-DBS on these postural features. Our findings indicate that Parkinson patients, even in the absence of any clinical evidence of instability, falls, or freezing, use proprioceptive information for postural control less efficiently than healthy subjects. Furthermore, STN-DBS was found to improve proprioceptive integration, with positive impacts on postural orientation and balance.
Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.

Author