The involvement of leukocytes in the pathophysiology of DR has mostly examined the role of monocytes and neutrophils with little emphasis on other immune cell types. In this study, we determined the systemic alterations in T cell subsets, myeloid cell types, NK cells, and NKT cells in the streptozotocin (STZ) mouse model of diabetic retinopathy (DR), and the role of NKT cells on retinal leukostasis and permeability changes. C57BL/6 J mice were made diabetic with 60 mg/kg dose of STZ given for 5-days. Flow cytometry assay measured the frequency of leukocyte subsets in the peripheral blood, spleen, and bone marrow of STZ- and vehicle-treated C57BL/6 J mice. Our results showed an increased proportion of memory CD8 T cells and interferon-gamma (IFN-γ) secreting CD8 T cells in the bone marrow of STZ-treated compared to control mice. Subsequently, increased production of inflammatory monocytes in the bone marrow and an enhanced frequency of CD11b + cells in the diabetic retina were seen in STZ-treated compared to control mice. The diabetic mice also exhibited a decrease in total NKT and CD4+NKT cells. A monoclonal antibody-based approach depleted NKT cells from STZ-treated mice, followed by measurements of retinal vascular permeability and leukostasis. The depletion of NKT cells in STZ-treated mice resulted in a significant increase in vascular permeability in the retinal tissue. Together, our results strongly imply the involvement of NKT cells in regulating the pathophysiology of the diabetic retina.
Copyright © 2020. Published by Elsevier Ltd.

Author