Spinal cord injury (SCI) is a challenge worldwide, but there are no effective treatments or therapeutic methods in the clinic. Recent studies have shown that type I arginase (Arginase1, Arg1) is closely associated with the treatment of SCI. The classical treatment for SCI involves filling the local area of SCI with activated M2a macrophages to allow the repair and regeneration of some synapses, but the specific mechanism of action of Arg1 is not clear.
In this study, we first induced the polarization of RAW264.7 macrophages to M2a-type cells using IL-4 and constructed an Arg1 knockout cell line through the use of shRNA; we used these cells to treat a rat model of SCI. Finally, this study explored the mechanism and pathway by which Arginase 1 regulates spinal repair by immunoblotting and immunohistochemistry.
Suspended M2a (Arg1-/+) macrophages were transplanted into the injury site in a rat model of contusion SCI. Compared with the model group and the shArg1 group, the shScramble (shSc) group exhibited higher BBB motor function scores, more compact structures and more Nissl bodies. Immunohistochemical results showed that the shSc group expressed higher levels of NeuN (a neuronal marker) and tau (an axonal marker), as well as the upregulation of Cdc42, N-WASP, Arp2/3 and tau, as determined by western blot.
The study found that the polarization of M2a macrophages promoted the expression of Arginase 1, which restored axonal regeneration, promoted axonal regeneration, and promoted the structural and functional recovery of the contused spinal cord.

Copyright 2020 The Author(s).