A 75-day rearing trail was designed to evaluate the immunoreaction and antioxidant capacity of juvenile blunt snout bream in response to dietary methionine levels. Three practical diets were extruded to feed juveniles with graded methionine levels (0.40%, 0.84% and 1.28% dry matter). The data indicated that the plasma concentrations of immunoglobulin M (IgM), complement component 3 (C3) and glutathione (GSH) in the 0.84% methionine diet were markedly upper than those in the 0.40% group (P < 0.05). The activities of plasma antioxidant parameters involving catalase (CAT), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC) and glutathione peroxidase (GPx) were significantly increased by the 0.84% diet compared with the 0.40% diet, whereas plasma alanine aminotransferase (ALT) and malondialdehyde (MDA) levels were significantly induced by 0.40% methionine (P < 0.05). Compared with the 0.40% group, 0.84% dietary methionine dramatically upregulated the mRNA expression levels of protein kinase B (Akt), phosphoinositide 3-kinase (PI3K) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathway related genes including CAT, manganese superoxide dismutase (Mn-SOD), heme oxygenase 1 (HO-1) and glutathione peroxidase-1 (GPx-1) in the kidney and liver, and downregulated Kelch-like ECH-associated protein 1 (Keap1) mRNA levels (P < 0.05). Compared with the 0.40% group, the 0.84% dietary methionine strikingly suppressed the mRNA levels of renal and hepatic nuclear factor-kappa B (NF-κB) and pro-inflammatory cytokines (interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6)), however, improved the mRNA expression levels of anti-inflammatory cytokines involved renal and hepatic transforming growth factor-β (TGF-β) and hepatic interleukin 10 (IL-10) (P  0.05). Dietary methionine (0.84%) significantly upregulated renal and hepatic heat stress protein 70 (Hsp70), renal B-cell lymphoma-2 (Bcl-2) gene expression levels compared with the 0.40% diet (P < 0.05). In a word, the data represented that 0.84% dietary methionine could enhance the immune and antioxidant capacity of this fish species by inducing PI3K/Akt/Nrf2 pathway and inhibiting NF-κB pathway.
Copyright © 2020. Published by Elsevier Ltd.