Male infertility is recognized as a relatively common, complex condition, generated by a broad array of environmental and genetic factors. Historical reliance on the conventional semen profile has tended to underestimate the true contribution of “the male factor” to human infertility. This review highlights the importance of genetic and epigenetic factors in the etiology of male infertility, identifying a range of mutations responsible for primary testicular failure and impaired fertilizing potential. More than three quarters of all de novo mutations arise in the male germline via mechanisms that involve the inefficient or defective repair of DNA damage. Understanding the range of factors capable of creating genetic turmoil in the paternal germline is essential, if we are to gain a deep understanding of the causes of male infertility, rather than just the symptoms that characterize its presence. High levels of DNA fragmentation induced by oxidative stress are part of this equation. Oxidative stress is, in turn, driven by biological (age, ejaculation frequency, varicocele, infection), lifestyle (smoking, obesity), and environmental factors (heat, other forms of electromagnetic radiation, and toxins) that can impair the fertilizing potential of the spermatozoa and influence the incidence of spontaneous mutations that may cause infertility in the offspring.
Thieme. All rights reserved.

References

PubMed