An increasing amount of evidence suggests the existence of a stem cell-like population in head and neck squamous cell carcinoma (HNSCC). These cells have been termed cancer stem cells (CSC) due to the shared properties with somatic stem cells, such as the ability to self-renew and differentiate. Furthermore, the CSC are thought to be resistant to antineoplastic treatments and are therefore clinically relevant. As with somatic stem cells, CSC are thought to reside in a specialized supportive microenvironment, called the stem cell niche. One possible strategy to target the CSC could be through affecting functions of the stem cell niche.Stromal cell-derived factor-1 (SDF-1) is a multifunctional cytokine, which is secreted by e. g. stromal cells within the niche. SDF-1 is known to be the major regulator of stem cell trafficking between the niche and the peripheral vascular system. It elicits the chemotactic activity through interaction with a transmembrane receptor CXCR4, expressed by CSC. The SDF-1-CXCR4-axis is thought to play a crucial role in the interaction between CSC and their supportive cells in the tumor niche. A better understanding of these interactions could help in gaining further insight into the pathophysiology of progression/recurrence of malignant diseases and aid in finding new strategies for therapy.Specialized cell culture models are of advantage for deciphering the mechanisms of interaction between CSC and their niche. We anticipate that the recent technological advancements in bioprinting and the development of complex 3D cell culture model systems will contribute to our understanding of these mechanisms and to the establishment of individualized therapies.Here were provide an overview of the current knowledge on the CSC-tumor stem cell niche interactions in HNSCC with a focus on the SDF-1-CXCR4 axis.
Thieme. All rights reserved.

References

PubMed