Exposure to arsenic, which occurs via various routes, can cause reproductive toxicity. However, the mechanism for arsenic-induced reproductive disorders in male mice has not been extensively investigated. Here, 6-week-old male mice were dosed to 0, 5, 10, or 20 ppm sodium arsenite (NaAsO), an active form of arsenic, in drinking water for six months. For male mice exposed to arsenite, fertility was lower compared to control mice. Moreover, for exposed mice, there were lower sperm counts, lower sperm motility, and higher sperm malformation ratios. Further, the mRNA and protein levels of the gonadotropin-regulated testicular RNA helicase (DDX25) and chromosome region maintenance-1 protein (CRM1), along with proteins associated with high mobility group box 2 (HMGB2), phosphoglycerate kinase 2 (PGK2), and testicular angiotensin-converting enzyme (tACE) were lower. Furthermore, chronic exposure to arsenite led to lower H2A ubiquitination (ubH2A); histone H3 acetylation K18 (H3AcK18); and histone H4 acetylations K5, K8, K12, and K16 (H4tetraAck) in haploid spermatids from testicular tissues. These alterations disrupted deposition of protamine 1 (Prm1) in testes. Overall, the present results indicate that the ubiquitination and acetylation of histones is involved in the spermiogenesis disorders caused by chronic exposure to arsenite, which points to a previously unknown connection between the modification of histones and arsenite-induced male reproductive toxicity.
Copyright © 2020. Published by Elsevier Inc.