Acute kidney injury (AKI) is known as a sudden episode of kidney injury, which happens suddenly within a few hours or a few days. Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a flavonoid found in plants. Quercetin is known to have several biological activities, such as anti-oxidant, anti-inflammatory, and anti-carcinogenic effects. However, low water solubility and bioavailability are the limitations of quercetin for its clinical applications. Moreover, ischemia/reperfusion (I/R) injury is a common cause of AKI. There are no satisfactory strategies for I/R-induced AKI. Developing suitable preventive or therapeutic intervention for AKI is an important and urgent issue. We investigated the benefit effect of synthesized polyethylene glycol (PEG) conjugated polyethyleneimine (PEI) nanoparticles for targeted delivery of quercetin on AKI in a mouse model. An I/R-induced AKI mouse model was used to evaluate the therapeutic effect of quercetin polymeric nanoparticles by intravenous injection. Biochemical changes for renal function in blood samples were analyzed. Histological and immunohistochemical changes were also analyzed. The biochemical changes of blood urea nitrogen (BUN), creatinine, and cystatin C were significantly increased in I/R-induced AKI mice, which could be significantly reversed by quercetin polymeric nanoparticles. Quercetin polymeric nanoparticles could also significantly decrease the histological lesions, positive staining for 3-nitrotyrosine and cyclooxygenase-2, and lipid peroxidation in the kidneys of I/R-induced AKI mice. These results demonstrate for the first time that quercetin polymeric nanoparticles possess therapeutic potential for the treatment of I/R-induced AKI in vivo.
Copyright © 2022 Elsevier Inc. All rights reserved.

Author