In the field of spectral imaging, numerous instruments use scanning-based technologies. However, the temporal dimension of these systems, whether to scan the spectrum or scan the scene, can be an issue for some applications. This is particularly the case when trying to observe and identify rapid temporal variations in a fixed scene or detecting objects of interest when moving. In this case, it is suitable to observe the desired spectral information of the scene simultaneously, and so-called snapshot systems have been thus investigated. In this paper, we study the ability of a kaleidoscope-based multiview camera to acquire multispectral information in the long wavelength infrared. Several strategies and technologies will be compared to add the spectral function inside the different blocks of a kaleidoscope-based camera: the front lens, the kaleidoscope, or the reimaging lens. The studied camera uses an uncooled infrared detector and thus must deal with the issue of having a large aperture.