Long-term administration of acetylsalicylic acid (ASA) was effective in prevention of colorectal cancer, whereas the efficacy of this compound in other cancer types, including breast cancer, has been less convincingly documented. Indeed, the antimetastatic effect of low-dose ASA was observed only in the early intravascular phase of metastasis of breast cancer. In the present work, we characterized the effects of long-term treatment with ASA on the late phase of pulmonary metastasis in a mouse orthotopic 4T1 breast cancer model. Mice were treated with ASA at a dose of 12 mg·kg-1 of body weight daily starting one week prior to inoculation of 4T1 breast cancer cells, and the treatment was continued throughout progression of the disease. ASA administration decreased platelet TXB2 production in ex vivo assays but did not change thrombin-induced platelet reactivity. Although the number of metastases in the lungs remained unchanged in ASA-treated mice, infiltration of inflammatory cells was increased concomitantly with higher G-CSF and serotonin concentrations in the lungs. Pulmonary NO production was compromised compared to control 4T1 mice. ASA treatment also evoked an increase in platelet and granulocyte counts and decreased systemic NO bioavailability along with increased markers of systemic oxidant stress such as higher GSSG/lower GSH concentrations in RBC. Analysis of eicosanoids in stirred blood demonstrated that administration of ASA at a dose of 12 mg·kg-1 to cancer-bearing mice had an effect beyond inhibition of platelet COX-1, suggesting long-term treatment with low-dose aspirin is not a selective murine platelet COX-1/TXA2 pathway inhibitor in cancer-bearing mice. In summary, quite surprisingly, long-term treatment with low-dose ASA administered until the advanced phase of breast cancer in a murine orthotopic model of 4T1 breast cancer negatively affected the phenotype of the disease.

Author