Vitamin D deficiency is common in patients with asthma and COPD. Low 25-hydroxyvitamin D (25[OH]D) levels may represent a cause or a consequence of these conditions.
To determine whether vitamin D metabolism is altered in asthma or COPD.
We conducted a longitudinal study in 186 adults to determine whether the 25(OH)D response to six oral doses of 3 mg vitamin D3, administered over one year, differed between those with asthma or COPD vs. controls. Serum concentrations of vitamin D3, 25(OH)D3 and 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3) were determined pre- and post-supplementation in 93 adults with asthma, COPD or neither condition, and metabolite-to-parent compound molar ratios were compared between groups to estimate hydroxylase activity. Additionally, we analyzed fourteen datasets to compare expression of 1α,25[OH]2D3-inducible gene expression signatures in clinical samples taken from adults with asthma or COPD vs. controls.
The mean post-supplementation 25(OH)D increase in participants with asthma (20.9 nmol/L) and COPD (21.5 nmol/L) was lower than in controls (39.8 nmol/L; P=0.001). Compared with controls, patients with asthma and COPD had lower molar ratios of 25(OH)D3-to-vitamin D3 and higher molar ratios of 1α,25(OH)2D3-to-25(OH)D3 both pre- and post-supplementation (P≤0.005). Inter-group differences in 1α,25[OH]2D3-inducible gene expression signatures were modest and variable where statistically significant.
Attenuation of the 25(OH)D response to vitamin D supplementation in asthma and COPD associated with reduced molar ratios of 25(OH)D3-to-vitamin D3 and increased molar ratios of 1α,25(OH)2D3-to-25(OH)D3 in serum, suggesting that vitamin D metabolism is dysregulated in these conditions.

Author