As we vocalize, our brains generate predictions of the sounds we produce to enable suppression of neural responses when intentions match vocalizations and to make adjustments when they do not. This may be instantiated by efference copy and corollary discharge mechanisms, which are impaired in people with schizophrenia (SZ). Although innate, these mechanisms can be affected by intentions. We asked if attending to pitch during vocalizations would take these mechanisms “off-line” and reduce suppression.
Event-related potentials (ERP) were recorded from 96 SZ and 92 healthy controls (HC) as they vocalized triplets in monotone (Phrase) or sang triplets in ascending thirds (Pitch). Pre-vocalization activity (Bereitschaftspotential, BP), N1, and P2 ERP components to sounds were compared during vocalization and playback.
N1 was not as suppressed during Pitch as during Phrase. N1 suppression was not affected by SZ in either task when all data were collapsed across pitches (Pitch) and positions (Phrase). However, when binned according to vocalization performance, SZ showed less N1 suppression than HC at longer (>2 s) inter-stimulus intervals (Phrase) and inconsistent suppression across pitches (Pitch). Unlike N1, P2 was more suppressed during Pitch than Phrase and not affected by SZ. BP was greater during vocalization than playback but did not contribute to N1 or P2 effects. Pitch variability was inversely related to negative symptoms.
Neural processing is not suppressed when patients and controls sing, and corollary discharge abnormalities in schizophrenia are only seen at long vocalization intervals.