The exposome concept refers to the totality of exposures from a variety of external and internal sources including chemical agents, biological agents, or radiation, from conception onward, over a complete lifetime. It encompasses also “psychosocial components” including the impact of social relations and socio-economic position on health. In this review we provide examples of recent contributions from exposome research, where we believe their application will be of the greatest value for moving forward. So far, environmental epidemiology has mainly focused on hard outcomes, such as mortality, disease exacerbation and hospitalizations. However, there are many subtle outcomes that can be related to environmental exposures, and investigations can be facilitated by an improved understanding of internal biomarkers of exposure and response, through the application of omic technologies. Second, though we have a wealth of studies on environmental pollutants, the assessment of causality is often difficult because of confounding, reverse causation and other uncertainties. Biomarkers and omic technologies may allow better causal attribution, for example using instrumental variables in triangulation, as we discuss here. Even more complex is the understanding of how social relationships (in particular socio-economic differences) influence health and imprint on the fundamental biology of the individual. The identification of molecular changes that are intermediate between social determinants and disease status is a way to fill the gap. Another field in which biomarkers and omics are relevant is the study of mixtures. Epidemiology often deals with complex mixtures (e.g. ambient air pollution, food, smoking) without fully disentangling the compositional complexity of the mixture, or with rudimentary approaches to reflect the overall effect of multiple exposures or components. From the point of view of disease mechanisms, most models hypothesize that several stages need to be transitioned through health to the induction of disease, but very little is known about the characteristics and temporal sequence of such stages. Exposome models reinforce the idea of a biography-to-biology transition, in that everyone’s disease is the product of the individual history of exposures, superimposed on their underlying genetic susceptibilities. Finally, exposome research is facilitated by technological developments that complement traditional epidemiological study designs. We describe in depth one such new tools, adductomics. In general, the development of high-resolution and high-throughput technologies interrogating multiple -omics (such as epigenomics, transcriptomics, proteomics, adductomics and metabolomics) yields an unprecedented perspective into the impact of the environment in its widest sense on disease. The world of the exposome is rapidly evolving, though a huge gap still needs to be filled between the original expectations and the concrete achievements. Perhaps the most urgent need is for the establishment of a new generation of cohort studies with appropriately specified biosample collection, improved questionnaire data (including social variables), and the deployment of novel technologies that allow better characterization of individual environmental exposures, ranging from personal monitoring to satellite based observations.
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.

References

PubMed