Influenza viruses are small RNA viruses with a genome of about 13 kb. Because of this limited coding capacity, viral proteins have evolved to fulfil multiple functions in the infected cell. This implies that there must be mechanisms allowing to dynamically direct protein action to a distinct activity in a spatio-temporal manner. Furthermore, viruses exploit many cellular processes, which also have to be dynamically regulated during the viral replication cycle. Phosphorylation and dephosphorylation of proteins are fundamental for the control of many cellular responses. There is accumulating evidence that this mechanism represents a so far underestimated level of regulation in influenza virus replication. Here, we focus on the current knowledge of dynamics of phospho-modifications in influenza virus replication and show recent examples of findings underlining the crucial role of phosphorylation in viral transport processes as well as activation and counteraction of the innate immune response.
© 2021 Walter de Gruyter GmbH, Berlin/Boston.

Author