Multiple sclerosis (MS) is the most popular chronic and debilitating inflammatory disease of the central nervous system (CNS) that remains incurable. Dihydroorotate dehydrogenase (DHODH) is critical to the activity of T lymphocytes and represents a potential therapeutic target for MS. Here we identify piperine, a bioactive constituent of black pepper, as a potent inhibitor of DHODH with an IC value of 0.88 μM. Isothermal titration calorimetry and thermofluor assay demonstrate the directly interaction between piperine and DHODH. The co-complex crystal structure of DHODH and piperine at 1.98 Å resolution further reveal that Tyr356 residue of DHODH is crucial for piperine binding. Importantly, we show that piperine can inhibit T cell overactivation in a DHODH-dependent manner in concanavalin A-triggered T-cell assay and mixed lymphocyte reaction assay. Finally, piperine exhibits strong preventive and therapeutic effect in the MOG-induced experimental allergic encephalomyelitis (EAE), a useful model for studying potential treatments for MS, by restricting inflammatory cells infiltration into the CNS and preventing myelin destruction and blood-brain barrier (BBB) disruption. Taken together, these findings highlight DHODH as a therapeutic target for autoimmune disease of the nervous system, and demonstrate a novel role for piperine in the treatment of MS.
Copyright © 2020 Elsevier Inc. All rights reserved.