Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a crucial regulator of neuronal development, neuronal survival, axonal regeneration, and synaptic plasticity. In this study we examined the potential role of PTEN in cognitive function in a mouse model of perioperative neurocognitive disorder (PND). Adult male C57BL/6J mice received intracerebroventricular injections of small interfering RNA (siRNA) against PTEN or control siRNA 3 days prior to exploratory laparotomy (n=8 per group). A group of healthy mice not undergoing surgery included as additional control. Barnes maze and fear conditioning tests were conducted 7 days after surgery. Mice were then sacrificed to examine the expression of PTEN, AMP-activated protein kinase (AMPK), ionized calcium binding adaptor molecule (Iba)-1, B-cell lymphoma (Bcl)-2, Bcl2-associated X protein (Bax), interleukin (IL)-1β, and tumor necrosis factor (TNF)-α in the hippocampus. The microglial activation was examined by immunohistochemistry using Iba-1 as a microglia maker. Nissl and terminal transferase deoxyuridine triphosphate nick-end labeling (TUNEL) staining were used to measure cell death and apoptosis. In comparison to the healthy controls, surgically treated mice had longer latency to identify the target box in both training and testing sessions in the Barnes maze test and shorter freezing time in the fear conditioning test. Surgically treated mice had increased expression of PTEN, AMPK, Bax, IL-1β, and TNF-α, as well as increasing number of activated microglia and apoptosis neurons in the hippocampus. PTEN knockdown significantly attenuated the behavioral deficits in Barnes maze and fear conditioning tests, as well as over-expression of PTEN, AMPK, Bax, IL-1β, and TNF-α induced by surgery. PTEN knockdown could attenuate cognitive deficits induced by trauma, likely through inhibiting the activation of microglia.
Copyright © 2021. Published by Elsevier Ltd.