Insomnia affects physical and mental health due to the lack of continuous and complete sleep architecture. Polysomnograms (PSGs) are used to record electrical information to perform sleep architecture using deep learning. Although acupuncture combined with cognitive-behavioural therapy for insomnia (CBT-I) could not only improve sleep quality, solve anxiety, depression but also ameliorate poor sleep habits and detrimental cognition. Therefore, this study will focus on the effects of electroacupuncture combined with CBT-I on sleep architecture with deep learning.
This randomised controlled trial will evaluate the efficacy and effectiveness of electroacupuncture combined with CBT-I in patients with insomnia. Participants will be randomised to receive either electroacupuncture combined with CBT-I or sham acupuncture combined with CBT-I and followed up for 4 weeks. The primary outcome is sleep quality, which is evaluated by the Pittsburgh Sleep Quality Index. The secondary outcome measures include a measurement of depression severity, anxiety, maladaptive cognitions associated with sleep and adverse events. Sleep architecture will be assessed using deep learning on PSGs.
This trial has been approved by the institutional review boards and ethics committees of the First Affiliated Hospital of Sun Yat-sun University (2021763). The results will be disseminated through peer-reviewed journals. The results of this trial will be disseminated through peer-reviewed publications and conference abstracts or posters.

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.