Red rice bran extract (RRBE) is rich in phytonutrients and has been shown to have anti-diabetic, anti-inflammatory, and antioxidant properties. However, its anti-hepatic steatosis and anti-dyslipidemic properties have not been thoroughly investigated. This study examined the aforementioned properties of RRBE, the underlying mechanism by which it alleviated non-alcoholic fatty liver disease in high-fat diet (HFD)-fed mice, and its major bioactive constituents. The mice were divided into four groups based on their diet: (1) low-fat diet (LFD), (2) LFD with high-dose RRBE (1 g/kg/day), (3) HFD, and (4) HFD with three different doses of RRBE (0.25, 0.5, and 1 g/kg/day). The administration of RRBE, especially at medium and high doses, significantly mitigated HFD-induced hepatosteatosis and concomitantly improved the serum lipid profile. Further, RRBE modified the level of expression of lipid metabolism-related genes (adipose triglyceride lipase (ATGL), cluster of differentiation 36 (CD36), lipoprotein lipase (LPL), liver X receptor alpha (LXRα), sterol regulatory element-binding protein-1c (SREBP-1c), SREBP-2, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), and carnitine palmitoyltransferase 1A (CPT1A)) in hepatic or adipose tissues and improved the expression of hepatic high-density lipoprotein cholesterol (HDL-C) cmetabolism-related genes (hepatic lipase (HL) and apolipoprotein A-ǀ (ApoA-ǀ)). RRBE also attenuated markers of liver injury, inflammation, and oxidative stress, accompanied by a modulated expression of inflammatory (nuclear factor-kappa B (NF-κB) and inducible nitric oxide synthase (iNOS)), pro-oxidant (p47), and apoptotic (B-cell lymphoma protein 2 (Bcl-2)-associated X and Bcl-2) genes in the liver. High-performance liquid chromatography analyses indicated the presence of protocatechuic acid, γ-oryzanol, vitamin E, and coenzyme Q10 in RRBE. Our data indicate that RRBE alleviates HFD-induced hepatosteatosis, dyslipidemia, and their pathologic complications in part by regulating the expression of key genes involved in lipid metabolism, inflammation, oxidative stress, and apoptosis.